
MATHEMATICS OF COMPUTATION, VOLUME 26, NUMBER 120, OCTOBER 1972

Optimal Multiplication Chains for Computing a Power
of a Symbolic Polynomial

By W. Morven Gentleman

Abstract. This paper shows that in a certain model of symbolic manipulation of algebraic
formulae, the simple method of computing a power of a symbolic polynomial by repeated
multiplication by the original polynomial is, in essence, the optimal method.

Introduction. There is considerable literature [2] on optimal multiplication
chains for computing a power of an integer. A rudimentary result is that, whereas
simply repeatedly multiplying by the original integer can be arbitrarily bad, the
well-known scheme of repeatedly squaring the integer, then taking appropriate
products of the powers so formed, uses at worst twice the minimal number of multi-
plications required. Recently, several workers in the subject of symbolic manipulation
of algebraic formulae have discovered that to compute a power of a symbolic poly-
nomial, however, repeated squaring can be considerably more expensive than merely
repeatedly multiplying by the original polynomial (already being 50%0 more expensive
for just the 4th power of long polynomials). The purpose of this note is to establish
the very strong result that, under appropriate conditions, repeated multiplication by
the original polynomial is, in fact, the optimal multiplication chain for computing
a power of a symbolic polynomial.

Computational Model. The computational model which we shall assume is
that appropriate for sparse polynomials, namely that whatever the number of in-
determinates in the polynomial, and whatever the degree of the polynomial in each
indeterminate, there are only n nonzero terms. That is, we assume P1 is a multinomial
of n terms

(1) P1 = tl + t2 + + tn

where the monomials ti, .., t, are distinct but can be of arbitrary degree in each of
an arbitrary number of variables. We shall denote the number of nonzero terms in
a polynomial P as L(P).

We assume further that each of the polynomials

(2) Pi = (tl + t2 + ? * + tn)

for all powers j up to that desired contain, when expanded, exactly the number

Received March 23, 1971.
AMS 1969 subject classifications. Primary 1230, 68XX.
Key words and phrases. Symbolic algebraic manipulation, optimal multiplication chains, com-

plexity.

Copyright (?) 1972, American Mathematical Society

935

936 W. MORVEN GENTLEMAN

of terms indicated by the n-term multinomial expansion, with no further collection of
like terms possible. One can readily show, by induction or by combinatoric arguments,
that, using the usual notation for binomial coefficients,

(3) L(Pi) =(n !)

The cost of multiplying two sparse polynomials is the cost of multiplying each
of the terms of the first by each of the terms of the second, then collecting like terms
of the product so formed. The cost of the additions in actually collecting like terms
is negligible, since the polynomials being sparse implies the number of like terms is
small. Recognizing like terms, however, requires that the product monomials be
ordered (say increasing in degree lexicographically by indeterminate) and since
there is no simple way to generate the product monomials in order, some sorting is
required. If the terms of the factor polynomials are so ordered, however, the product
monomials corresponding to a specific term of one factor with each term of the other
factor will also be ordered, so the necessary sorting is to merge these sequences.

To multiply a polynomial P by a polynomial Q thus costs L(P)L(Q) monomial
multiplications (coefficient multiplication plus exponent set addition) plus the cost
of this merge, which is L(P)L(Q) log2 min (L(P), L(Q)) comparisons. In the results
that follow, we shall measure cost merely as L(P)L(Q); consideration of the log term
in the merge merely strengthens them.*

We note in passing that this computational model of polynomial manipulation
is not the only one amenable to analysis. Another common model is that of dense
polynomials: the polynomials are of degrees d1, d2, , dm, in each of m different
variables, and each possible term is present. Sorting here is unnecessary as product
monomials can be generated in order. Moreover, fast Fourier transform methods
can be used to multiply the polynomials without forming and summing the individual
product monomials [1]. Nevertheless, the superiority of repeated multiplication over
repeated squaring has been shown for dense polynomials too, provided m is not
equal to one.

Multiplication Chain Cost Comparison. To compare multiplication chains,
we shall assume that somehow P, has been obtained, and Pr+s is desired, s < r.
We shall also assume P. is available free, so the first method is to produce P.+, by
multiplying Pr and P8, at cost

(4) Cost I = L(Pr)L(Ps) =(n ! 1)(n - 1 ?

The second method. consists of ignoring P8, and multiplying P, by P1 to produce
Pr+i, then Pr Fi by P1 to produce Pr+2, etc., until Pr+s is produced. The cost of this
repeated multiplication is

* The referee has pointed out that if P and Q are the same, i.e., if we square a polynomial, a special
polynomial multiplication routine can be used that avoids half the apparent multiplications and
comparisons. The analysis in this paper ignores this possibility, but allowing for it only has the effect
of increasing the size necessary for r to be sufficiently large in the theorem and corollary.

COMPUTING A POWER OF A SYMBOLIC POLYNOMIAL 937

r+s-1 r+s-1 + j
Cost II = , L(P1)L(P7)= n , jn-IJ)

(5) n (n + r + s-) (n +r- 1)

= (r + s) + r + s) n- 1 + r)

where we have used the identity

(6) E~~~~~ (n- + j) =n + k)

If Cost I is bigger than Cost II, then using P. is more expensive than repeated multi-
plication, even though P, is available free. We will show that this is exactly what
happens.

THEOREM. (a) If n > 3, then for any sufficiently large r, Cost I exceeds Cost II
for all 2 < s < r.

(b) If n = 3, thenfor any sufficiently large r, Cost I exceeds Cost Ilfor all 3 < s < r,
but Cost II exceeds Cost I for s = 2 and all r.

(c) If n = 2, then Cost II exceeds Cost I for 2 < s < r and all r.
Proof. For fixed n, the difference between Cost I and Cost II can be viewed as

a polynomial in s with coefficients that are polynomials in r. If r is fixed sufficiently
large, the signs of these coefficient polynomials depend only upon the leading term
of each in r. By examining these leading terms, we can use Decartes rule of signs to
count the number of positive roots of the polynomial in s. Evaluating it at a few
points then sufficiently isolates the roots to prove (a) and the first part of (b):

Cost I - Cost II

(n- I +)(n- 1+) (r + s)(n - r) + r n-)

(n- + r) ...(+ r) n- + s

(n-) n-

_ (n- + r + s) *** (r + s) + (n- + r) ... (r)

(n - 1)! (n-)

rn (n-1 + s) n-2 n-1

sn _
n

n(n - 1 + 2s)r ?-1 n-2 n-1

(n- 1i)! (n- 1)! 2(n - 1)!

rn n(n _)r
1

?n2-11

(n- 1)! 2(n-1)!

" +(n + s) r __ IrI)+ 0(r" s) ?n l (In -1? -' I (nrn ? O(r21)

The notation O(rn 2Sn- 1) is used here to indicate a polynomial of degree not more
than n - 2 in r nor n - 1 in s. Since the binomial coefficient (n-js) is a polynomial

938 W. MORVEN GENTLEMAN

of degree n - 1 in s with all coefficients positive, the leading coefficients in r for each
power of s are given in (7). The coefficient of s' is negative, the coefficients of
sn- 1 , s2 are positive, the coefficient of sl is (rn- 1/(n -1)!) {I E

1 l/j - n} which
is always negative, and the coefficient of s? is again positive. If n ? 3, there are thus
three sign changes, and by Descartes' rule of signs, either one or three positive roots.
By construction, one of these roots is at s = 1.

Since the leading coefficient of s in (7) is negative, for fixed n and r and all suffi-
ciently large s, Cost I - Cost II is negative. But if s = r, we have from (7) that Cost I
- Cost II is r2n-2/(n - 1)!(n - 1)! + O(r2n-3), so that if the fixed r is sufficiently
large, Cost I - Cost II is positive. This shows there are indeed three roots, but one
is larger than r. It remains to locate the last root. Clearly, showing Cost I - Cost II
is positive at s = 2 suffices to show that this last root is less than 2, and hence proves
(a). But Cost I - Cost II at s = 2 is (n- j)n {(n - 3)/2 - (n - 1)/(1 + r)} from (4)
and (5), so for n > 3 and r sufficiently large, Cost I - Cost II is positive. However,
if n = 3, we note Cost I - Cost II at s = 2 is negative for all r, proving the second
part of (b). To locate the root for n = 3, we evaluate Cost I - Cost II for n = 3,
s = 3 getting '(r2 - 15r - 40) which is positive for sufficiently large r, so by the
argument used previously, the last root for n = 3 is less than s = 3, proving the first
part of (b). The explicit expansion of Cost I-Cost II for n = 2 is (1 -s)(I + r + s)
which is negative for all 2 ? s < r and all r, proving (c).

Comment. It is clearly of interest to know what 'sufficiently large' means in
parts (a) and (b) of this theorem. From the explicit form of Cost I - Cost II for s = 2,
and using induction on s, it can readily be proved that the smallest r, such that Cost I
is not less than Cost II for all 2 < s < r, is 5 if n is 4, is 3 if nis 5 or 6, and is 1 if
n is 7 or greater. Unfortunately, no proof has been found that the theorem applies
for all r greater than these, but extensive tabulation suggests this is so. Similarly, it
can be shown that the smallest r, such that Cost I is not less than Cost II for all 3 <
s < r, is 18 if n is 3, and more interestingly that, if n is 3 and s is even, the sequence
Pr+2, Pr+4, .. , Pr+s is cheaper than Cost I if r is 8 or 9 but not smaller. Again, there
is no proof available that this holds for all larger r, but tabulation indicates that it does.

COROLLARY. For each n > 3, there is some power, r(n), such that whatever the
optimal multiplication chain is for computing P(n , the optimal multiplication chain for
computing Pi, j > r(n), is to compute Pr(n), then repeatedly multiply by P1. For n = 3,
there is an odd power ro and an even power re, such that, whatever the optimal multipli-
cation chains are for computing Pro and Pre, the optimal multiplication chain for com-
puting P2i+,, 2j + 1 > ro, is to compute Pro and then repeatedly multiply by P2, and,
similarly, the optimal multiplication chain for computing P2j is to compute Pre and
then repeatedly multiply by P2.

Proof. Follows directly from the theorem once we confirm that, for n = 3,
the optimal multiplication chain cannot terminate as Pr, Pr+2 .* . .

Pr+2kg Pr+2k+lg

because the chain Pr Pr+19 Pr?39 . *. Pr+2k+l is cheaper.

Magnitude Comparison. While the optimality of repeated multiplication has
been shown, it might still be suspected that the costs are negligibly different. This
is not so, as can be seen for long polynomials by comparing the cost of producing
P2r by squaring Pr (assuming Pr is available free)

COMPUTING A POWER OF A SYMBOLIC POLYNOMIAL 939

Cost III = (n- 1 ?

(8 (n' + r(r - 1)n'fl + O(nr-2))2
(8) -(r!)2

= n2 r(r 1)) O(2r2),

with the full cost of producing P2, by repeated multiplication starting from P1,

Cost IV = 2r(n - Ir? 2r) -n

(n ?+ (2r)(2r - 1)nf2r-l O(nf2r-2)) (9) = 2r (2r)

____ r~~~~(2r)-
=2r

-n2r(+ r(2r - 1)) + 0(n 2r-2).

The ratio of these costs is

(10) Cost IH = 1 (2rV1 - + O(n)
Cost IV Ar ni

which shows that repeated squaring is essentially more expensive than repeated
multiplication by a binomial factor. Computing the 4th power of long polynomials
is already 1.5 times more expensive, computing the 8th power 8.75 times more ex-
pensive, and computing the 16th power 804 times more expensive. An effect of this
magnitude cannot be ignored.

Conclusion. The importance of these results is not that they show the cheapest
way to compute powers of a polynomial (suitably crafty substitution into the multi-
nomial expansion is cheaper, although multiplication chains would probably be used
in practice). Rather, they show the extent to which our intuition has been violated in
attempting to apply to polynomials results that are true for integer operations.
Moreover, they provide new insight into the general (and poorly understood) problem
of symbolic substitution of algebraic arguments into an algebraic form.

Acknowledgments. This problem arose in connection with the Altran symbolic
manipulator at Bell Telephone Laboratories and the author would like to thank
W. S. Brown, A. J. Goldstein, and other members of the Altran group for interesting
discussions on the subject. He would also like to thank P. C. Fischer for a useful
suggestion in the proof of the theorem. This research was supported by a University
of Waterloo Research Grant.

Department of Applied Analysis and Computer Science
University of Waterloo
Waterloo, Ontario, Canada

1. W. M. GENTLEMAN & G. SANDE, "Fast Fourier transforms-for fun and profit,"
Proceedings of the 1966 Fall Joint Computer Conference, AFIPS, Spartan Books, Washington,
1966, pp. 563-578.

2. D. KNUTH, The Art of Computer Programming: Vol. II. Seminumerical Algorithms,
Addison-Weslev. Reading. Mass.. 1968.

