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Optimal Multiplication Chains for Computing a Power 
of a Symbolic Polynomial 

By W. Morven Gentleman 

Abstract. This paper shows that in a certain model of symbolic manipulation of algebraic 
formulae, the simple method of computing a power of a symbolic polynomial by repeated 
multiplication by the original polynomial is, in essence, the optimal method. 

Introduction. There is considerable literature [2] on optimal multiplication 
chains for computing a power of an integer. A rudimentary result is that, whereas 
simply repeatedly multiplying by the original integer can be arbitrarily bad, the 
well-known scheme of repeatedly squaring the integer, then taking appropriate 
products of the powers so formed, uses at worst twice the minimal number of multi- 
plications required. Recently, several workers in the subject of symbolic manipulation 
of algebraic formulae have discovered that to compute a power of a symbolic poly- 
nomial, however, repeated squaring can be considerably more expensive than merely 
repeatedly multiplying by the original polynomial (already being 50%0 more expensive 
for just the 4th power of long polynomials). The purpose of this note is to establish 
the very strong result that, under appropriate conditions, repeated multiplication by 
the original polynomial is, in fact, the optimal multiplication chain for computing 
a power of a symbolic polynomial. 

Computational Model. The computational model which we shall assume is 
that appropriate for sparse polynomials, namely that whatever the number of in- 
determinates in the polynomial, and whatever the degree of the polynomial in each 
indeterminate, there are only n nonzero terms. That is, we assume P1 is a multinomial 
of n terms 

( 1 ) P1 = tl + t2 + + tn 

where the monomials ti, .., t, are distinct but can be of arbitrary degree in each of 
an arbitrary number of variables. We shall denote the number of nonzero terms in 
a polynomial P as L(P). 

We assume further that each of the polynomials 

(2) Pi = (tl + t2 + ? * + tn) 

for all powers j up to that desired contain, when expanded, exactly the number 
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of terms indicated by the n-term multinomial expansion, with no further collection of 
like terms possible. One can readily show, by induction or by combinatoric arguments, 
that, using the usual notation for binomial coefficients, 

(3) L(Pi) =(n ! ) 

The cost of multiplying two sparse polynomials is the cost of multiplying each 
of the terms of the first by each of the terms of the second, then collecting like terms 
of the product so formed. The cost of the additions in actually collecting like terms 
is negligible, since the polynomials being sparse implies the number of like terms is 
small. Recognizing like terms, however, requires that the product monomials be 
ordered (say increasing in degree lexicographically by indeterminate) and since 
there is no simple way to generate the product monomials in order, some sorting is 
required. If the terms of the factor polynomials are so ordered, however, the product 
monomials corresponding to a specific term of one factor with each term of the other 
factor will also be ordered, so the necessary sorting is to merge these sequences. 

To multiply a polynomial P by a polynomial Q thus costs L(P)L(Q) monomial 
multiplications (coefficient multiplication plus exponent set addition) plus the cost 
of this merge, which is L(P)L(Q) log2 min (L(P), L(Q)) comparisons. In the results 
that follow, we shall measure cost merely as L(P)L(Q); consideration of the log term 
in the merge merely strengthens them.* 

We note in passing that this computational model of polynomial manipulation 
is not the only one amenable to analysis. Another common model is that of dense 
polynomials: the polynomials are of degrees d1, d2, , dm, in each of m different 
variables, and each possible term is present. Sorting here is unnecessary as product 
monomials can be generated in order. Moreover, fast Fourier transform methods 
can be used to multiply the polynomials without forming and summing the individual 
product monomials [1]. Nevertheless, the superiority of repeated multiplication over 
repeated squaring has been shown for dense polynomials too, provided m is not 
equal to one. 

Multiplication Chain Cost Comparison. To compare multiplication chains, 
we shall assume that somehow P, has been obtained, and Pr+s is desired, s < r. 
We shall also assume P. is available free, so the first method is to produce P.+, by 
multiplying Pr and P8, at cost 

(4) Cost I = L(Pr)L(Ps) =(n ! 1 )(n - 1 ? 

The second method. consists of ignoring P8, and multiplying P, by P1 to produce 
Pr+i, then Pr Fi by P1 to produce Pr+2, etc., until Pr+s is produced. The cost of this 
repeated multiplication is 

* The referee has pointed out that if P and Q are the same, i.e., if we square a polynomial, a special 
polynomial multiplication routine can be used that avoids half the apparent multiplications and 
comparisons. The analysis in this paper ignores this possibility, but allowing for it only has the effect 
of increasing the size necessary for r to be sufficiently large in the theorem and corollary. 
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r+s-1 r+s-1 + j 
Cost II = , L(P1)L(P7)= n , jn-IJ) 

(5) n (n + r + s- ) (n +r- 1) 

= (r + s) + r + s) n- 1 + r) 

where we have used the identity 

(6) E~~~~~ (n- + j) =n + k) 

If Cost I is bigger than Cost II, then using P. is more expensive than repeated multi- 
plication, even though P, is available free. We will show that this is exactly what 
happens. 

THEOREM. (a) If n > 3, then for any sufficiently large r, Cost I exceeds Cost II 
for all 2 < s < r. 

(b) If n = 3, thenfor any sufficiently large r, Cost I exceeds Cost Ilfor all 3 < s < r, 
but Cost II exceeds Cost I for s = 2 and all r. 

(c) If n = 2, then Cost II exceeds Cost I for 2 < s < r and all r. 
Proof. For fixed n, the difference between Cost I and Cost II can be viewed as 

a polynomial in s with coefficients that are polynomials in r. If r is fixed sufficiently 
large, the signs of these coefficient polynomials depend only upon the leading term 
of each in r. By examining these leading terms, we can use Decartes rule of signs to 
count the number of positive roots of the polynomial in s. Evaluating it at a few 
points then sufficiently isolates the roots to prove (a) and the first part of (b): 

Cost I - Cost II 

(n- I + )( n- 1+ ) (r + s)( n - r ) + r n- ) 

(n- + r) ...( + r) n- + s 

(n- ) n- 

_ (n- + r + s) *** (r + s) + (n- + r) ... (r) 

(n - 1)! (n- ) 

rn (n-1 + s) n-2 n-1 

sn _ 
n 

n(n - 1 + 2s)r ?-1 n-2 n-1 

(n- 1i)! (n- 1)! 2(n - 1)! 

rn n(n _)r 
1 

?n2-11 

(n- 1)! 2(n-1)! 

" +(n + s) r __ IrI)+ 0(r" s) ?n l ( In -1? -' I (nrn ? O(r21) 

The notation O(rn 2Sn- 1) is used here to indicate a polynomial of degree not more 
than n - 2 in r nor n - 1 in s. Since the binomial coefficient (n-js) is a polynomial 
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of degree n - 1 in s with all coefficients positive, the leading coefficients in r for each 
power of s are given in (7). The coefficient of s' is negative, the coefficients of 
sn- 1 , s2 are positive, the coefficient of sl is (rn- 1/(n -1)!) {I E 

1 l/j - n} which 
is always negative, and the coefficient of s? is again positive. If n ? 3, there are thus 
three sign changes, and by Descartes' rule of signs, either one or three positive roots. 
By construction, one of these roots is at s = 1. 

Since the leading coefficient of s in (7) is negative, for fixed n and r and all suffi- 
ciently large s, Cost I - Cost II is negative. But if s = r, we have from (7) that Cost I 
- Cost II is r2n-2/(n - 1)!(n - 1)! + O(r2n-3), so that if the fixed r is sufficiently 
large, Cost I - Cost II is positive. This shows there are indeed three roots, but one 
is larger than r. It remains to locate the last root. Clearly, showing Cost I - Cost II 
is positive at s = 2 suffices to show that this last root is less than 2, and hence proves 
(a). But Cost I - Cost II at s = 2 is (n- j)n {(n - 3)/2 - (n - 1)/(1 + r)} from (4) 
and (5), so for n > 3 and r sufficiently large, Cost I - Cost II is positive. However, 
if n = 3, we note Cost I - Cost II at s = 2 is negative for all r, proving the second 
part of (b). To locate the root for n = 3, we evaluate Cost I - Cost II for n = 3, 
s = 3 getting '(r2 - 15r - 40) which is positive for sufficiently large r, so by the 
argument used previously, the last root for n = 3 is less than s = 3, proving the first 
part of (b). The explicit expansion of Cost I-Cost II for n = 2 is (1 -s)(I + r + s) 
which is negative for all 2 ? s < r and all r, proving (c). 

Comment. It is clearly of interest to know what 'sufficiently large' means in 
parts (a) and (b) of this theorem. From the explicit form of Cost I - Cost II for s = 2, 
and using induction on s, it can readily be proved that the smallest r, such that Cost I 
is not less than Cost II for all 2 < s < r, is 5 if n is 4, is 3 if nis 5 or 6, and is 1 if 
n is 7 or greater. Unfortunately, no proof has been found that the theorem applies 
for all r greater than these, but extensive tabulation suggests this is so. Similarly, it 
can be shown that the smallest r, such that Cost I is not less than Cost II for all 3 < 
s < r, is 18 if n is 3, and more interestingly that, if n is 3 and s is even, the sequence 
Pr+2, Pr+4, .. , Pr+s is cheaper than Cost I if r is 8 or 9 but not smaller. Again, there 
is no proof available that this holds for all larger r, but tabulation indicates that it does. 

COROLLARY. For each n > 3, there is some power, r(n), such that whatever the 
optimal multiplication chain is for computing P(n , the optimal multiplication chain for 
computing Pi, j > r(n), is to compute Pr(n), then repeatedly multiply by P1. For n = 3, 
there is an odd power ro and an even power re, such that, whatever the optimal multipli- 
cation chains are for computing Pro and Pre, the optimal multiplication chain for com- 
puting P2i+,, 2j + 1 > ro, is to compute Pro and then repeatedly multiply by P2, and, 
similarly, the optimal multiplication chain for computing P2j is to compute Pre and 
then repeatedly multiply by P2. 

Proof. Follows directly from the theorem once we confirm that, for n = 3, 
the optimal multiplication chain cannot terminate as Pr, Pr+2 .* . . 

Pr+2kg Pr+2k+lg 

because the chain Pr Pr+19 Pr?39 . *. Pr+2k+l is cheaper. 

Magnitude Comparison. While the optimality of repeated multiplication has 
been shown, it might still be suspected that the costs are negligibly different. This 
is not so, as can be seen for long polynomials by comparing the cost of producing 
P2r by squaring Pr (assuming Pr is available free) 
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Cost III = (n- 1 ? 

(8 (n' + r(r - 1)n'fl + O(nr-2))2 
(8) -(r!)2 

= n2 r(r 1 )) O(2r2), 

with the full cost of producing P2, by repeated multiplication starting from P1, 

Cost IV = 2r(n - Ir? 2r) -n 

(n ?+ (2r)(2r - 1)nf2r-l O(nf2r-2)) (9) = 2r (2r) 

____ r~~~~(2r)- 
=2r 

-n2r( + r(2r - 1)) + 0(n 2r-2). 

The ratio of these costs is 

(10) Cost IH = 1 (2rV1 - + O(n ) 
Cost IV Ar ni 

which shows that repeated squaring is essentially more expensive than repeated 
multiplication by a binomial factor. Computing the 4th power of long polynomials 
is already 1.5 times more expensive, computing the 8th power 8.75 times more ex- 
pensive, and computing the 16th power 804 times more expensive. An effect of this 
magnitude cannot be ignored. 

Conclusion. The importance of these results is not that they show the cheapest 
way to compute powers of a polynomial (suitably crafty substitution into the multi- 
nomial expansion is cheaper, although multiplication chains would probably be used 
in practice). Rather, they show the extent to which our intuition has been violated in 
attempting to apply to polynomials results that are true for integer operations. 
Moreover, they provide new insight into the general (and poorly understood) problem 
of symbolic substitution of algebraic arguments into an algebraic form. 
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